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Upon taking the average o f  the local transport equation with a homogeneous first-order chemical 

reaction, a differential equation is obtained for the mean concentration over the channel section in the 

form of  an infinite asymptotic series. Estimates are executed showing that we can limit ourselves to 

terms of  third order or even second order for not-too-high reaction rates in the averaged transport 

equation; however, additional convective and source-like terms appear here in the equations. The theory 

is confirmed by an experiment in a 3.4-m operating chemical reactor. 

The problem of determining the macrokinetic (effective) characteristics of a system (the diffusion, heat 
conductivity, electrical conductivity, etc.) on the basis of information about the local conductivity field configurations 
is of great theoretical interest and extreme practical importance. 

Since the local characteristics of the medium are unknown in the general case, the local conductivity field can 
be considered random. The effective conductivity (for concreteness we later examine the diffusion process) should 
here depend on all the parameters governing the local diffusion random field, on all its moments, e.g., and therefore 
sufficiently universal formulas for the determination of the average field characteristics should have a quite complex 
structure. 

Under certain simplifying assumptions (constancy of the mean concentration gradient over the channel length) 
satisfied with sufficient accuracy for practical purposes at just an extremely large distance from the source (Pe r = 

lu)R2/(HDr) << 7), the equation for the effective conductivity, and consequently, the macroscopic (averaged) 
diffusion equation was obtained in [1-3] for a known (laminar or turbulent) fluid velocity profile in the absence of 
concentration sources (sinks). 

The works by Taylor stimulated many publications of mainly experimental nature, where the principal 
condition of applicability of the model, the sufficiently long length (height) of the channel (apparatus) H for which 
the concentration gradient could be considered constant, was not sustained in the absolute majority of these papers. 
Consequently, the values found experimentally for the effective diffusion coefficient depended on the diameter and 
height of the apparatus, the physical properties of the mixtures investigated, the presence or absence of a chemical 
reaction, etc., whereupon the coefficient found in the tests could not be considered a parameter of the problem and its 
practical utilization turned out to be impossible in the majority of cases. 

The self-consistent field theory [4-9] was used for the analysis of the effective characteristics in many papers. 
Comparison of the results of a computation by this method with experiment and independent direct computations by 
the Monte-Carlo method [7] showed its extremely high accuracy. Unfortunately, a computation by this method is 
successful only when taking into account specific features of the problem and neglecting factors not essential in the 
particular case under consideration. 

Examination of the problem in a complete formulation is possible by applying the perturbation method. 
Selecting an appropriate "unperturbed" problem, the solution can be written in the form of a certain parameter, a 
perturbation treated suff~'tciently broadly at the present time. 
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Fig. 1. Reactor diagram and sensor arrangement. 

Fig. 2. Curves of the concentration change in time for different points of the lower reactor section. 

(u) = 0.49 m/h; 1) point 9, 2) 10, 3) 11, 4) 12. C pulse/see, T, rain. 

The averaged equation of nonstationary diffusion of a "passive" impurity in a flow with arbitrary velocity 
profile and initial condition of impulsive insertion of a display is the classical Taylor problem. A flow with uniform 
velocity profile was considered as the unperturbed problem. As shown in [10], the average diffusion equation is an 
asymptotic series whose terms are linear combination of the mean concentration (C) over the section in the time and 
axial coordinate while the coefficients depend on the degree of nonuniformity of the velocity profile and the 
efficiency of the radial mixing in the system. Estimates performed in [10] showed that utilization of a trinomial 
equation is sufficient for the majority of chemical technology processes but the accuracy of the computation can be 
raised, if necessary (low H / R  ratio, large nonuniformity of the velocity profile) by utilizing subsequent terms of the 

series. A method of experimental determination of the problem parameters is proposed in [10] -- the method of 
investigating the distribution function of the fluid residence time in the channel. The problem parameters -- the factor 
of velocity profile inhomogeneity A 1 and the radial Peclet number Pe r, are easily determined by a computation for a 
known velocity profile. The stationary diffusion problem in a channel with arbitrary velocity profile is examined in 
this paper in the presence of a source in the form of a homogeneous first order chemical reaction. 

Now we write the stationary equation of the change in concentration in a cylindrical channel during progress 
of a first-order chemical reaction in its volume. We direct the X axis along the channel length and the r axis along its 
radius, where r = 0 on the channel axis. Since the coordinate axes are determined by the conditions of a 
hydrodynamically stabilized flow in a tube, the matrix [D] should be diagonal. We discard the term responsible for 
longitudinal diffusion as small compared with the corresponding convective term and we take into account that the 
concentration derivatives with respect to the angle are zero in connection with the problem symmetry. Taking these 
assumptions into account, the diffusion equation takes the form 

c9C 1 0 IrDr dC ) --ocpC ~- O. (1) 
u dX r dr \ dr 

We decompose the velocity, concentration, and coefficient of radial diffusion into mean (over the channel section) and 
fluctuating components 
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Fig. 3. Curves of  the concentration change in time at points located above each other (u) = 0.49 m/h: 

1) point l; 2) 5; 3) 9. 

Fig. 4. Curves of  the concentration change in time for different  points of the lower reactor section 

(u) = 1.63 m/h.  Notation as in Fig. 2. 
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Fig. 5. Dependence of  the radial Peclet criterion Pe r on the reactive mass velocity 

referred to the total apparatus section: 1) points obtained by a computation on reactor 

efficiency; 2) points calculated from data of an analysis of  the fluid residence time 

distribution function in the apparatus, (u), m/h.  

u = ( u ) @ u ' ;  C - ( C ) - I - C ' ;  D, = ( D , )  ~D'~. (2) 

Substituting (2) into (1), we find 

( u )  - -  o ( c )  

d X  

dC' u' d ( C ) du'C'  

+ c u ) ~ + ctx ~ dX 

r rD; - -  o:~, ,, C ' - -  ~z,,C' O. 
r Or ~ r Or Or / " ' 

Taking the average of  (3) over the channel section, we obtain 

a ( C )  O(u'C'~ 
- -  4- otp ( C )  =- O. (4) 

( u ) OX OX 

We subtract (4) f rom (3), by neglecting the term ( l / r ) ( a / a r ) r D ' r ( a C ' / O r )  which, as shown in [10], does not introduce 
noticeable error in the calculation 
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Taking in dimensionless form 

X 
Z -  

H 

in place of (4) and (5), we obtain 

t u ) - -  OC' Ou'C' # ( u'C + 
OX OX OX 

<D,,)  
1" 

0 (r OC' \ O ( C )  
, OX 

(5) 

9 - 
r 

- - -  ; Pe~ -- 
R 

< u~ R z %1q u' 
" ~ ," u': . . . . . .  -, (6) ( O,.) tt <it> < u > 

O~C) 
OZ 

OC' 1 
OZ Pe~ 9 

a < c >  

o z  

= < c > -  a<u 'C '> , 
az (7) 

1 0 ' OC' 
09 (9, - ~ -  j - -  aC' 

OC' 0 ( u'C' ) . '  - -  ..... ~. (8) 
i)Z OZ 

The boundary conditions for (8) are determined by profile symmetry with respect to the central axis and by absence of 
= 

a stream near the tube wall 

OC' OC' 
9==0 --0;  9 : - I  - -0 .  

09 09 (9) 

Now we seek the solution of (8) by considering O(C)/OZ a parameter and the terms u'(OC'/OZ) + O(u'C')/OZ 
certain small corrections. Thus, we write the Green's function for (8) 

2 "~. E~ ]o 0~m) ]o 0~po) 
G(Z, Zo, 9, 9o)- Pe~ ~=x~ j~ (~,~) ' 

where, because of (9), the eigenvalues A i are roots of  the equation 

(lO) 

]1(}~i)=: 0, E~==exp[ .... ( s ~z)(Z.--Z.)]  
Per 

We take as the initial condition 

Z = O  C ' = 0 .  ( l l )  

Substituting (10) into the equation for C" and taking account of  (11) we obtain 

Z l ~  
c , = _ f  i 2 

•  O ( C----~) + u' OzoOC' O ( u'C' ] dZodp,. 
(12) 

We use an iteration method to solve the integrodifferential equation (12), in conformity with which we assume C" = 
C n" under the integral in evaluating Cn+x'. We take C o" = 0 for the initial approximation. We write the equation for 

CI': 
Z J ~ 2 

c l  = - j' j" ] ~  - -  z,]0 (~,m i0 0~,9o) 0o.' (90) a < c > dZ0dg0 
o o i=I ]2o(Zi) aZo (13) 

As shown in [10], integration with respect to 9o can be performed on (13) for each specific velocity profile, 
but it is impossible to integrate with respect to Z o since (C) is an unknown function of  Z. Consequently, integrating 
(13) with respect to Po, multiplying C" by u', and taking the average of the product obtained over the section of the 
apparatus, we obtain 
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z - O<C) 
< u'C' > = - -  J ~ K:E~--dZo, 

o i=: Ofo 
(14) 

where K i are certain constants determined by the velocity profile and identical to the appropriate constants in [10]. 

We substitute (14) into (7) 

d<C) ~<C)- d f2K~E~ d<C) dZo. 
dZ dZ o i=l dZo 05) 

We introduce the new variable 

C* = < C ) exp ( - -aZ) .  (16) 

Substituting (16) into (15), we find 

dC* _ d 

OZ dZ 
__ J: ~ ~ : , :  ( tiC* + ~C~ j , ,  = K, __dC*dz + ~c:,, --- 

0 i:--1 ":= 

- -  ff ~ K i E l l -  )Q ( dC----~-~ -~ (zC* t dZo; ~ i i  =:  e x p  - - -  ( Z  - -  Z0)  , 
o ~=t Per \ dZo / Pe,, 

(17) 

Next we differentiate (17) with respect to Z, multiply by Per/A~ 2, and add the expression obtained to (17) to obtain 

dC* P e , , d Z C * * ~ . . ~ ( d z C  * tiC* 1 2 ( ) ~  ) ( d e *  ) 
dZ -+ ~ -- K~ +a ...... E~ ~ - - t  +aC* ~o~ dZ ~ \---d~J-.~ dZ / ,~ -d-~. + i=2 

08) 

~5 i=2 PeT ~,~ 

Differentiating (18) with respect to Z, multiplying by Per/IZ ~, and adding the expression obtained to (18), we 
eliminate the integral with exp[--A~(Z -- Zo)/Per]o Continuing this procedure further theoretically to infinity, and 
substituting the value of C* and its derivatives into the final expression, we find that the averaged diffusion equation 
with a first-order chemical reaction has the form 

+2 
i=I 

]=i-b l 
: = h  H 

--~ <C 

_ _  d < C  

dZ 

[ 1 - - ~  ~PeT72 + ~ ~2pe~ .~ ~ ~ - ,, o~ a _F...I + 

f = i + l  / = / q  I 
h = l  H 

,.=-~ )r ,.=, ~=: ),~),: ),~ + + 
i = i + 1  :=i+1 h=l+ 1 

6aaPe~ 

: = i + :  
:, =i+ l 

1 d a i C > a~Pe; 4~Pe~ 
+ ~,. . z ~  " ~ ~ - -  ~ ~ . ~  + 

i--i '"i ~i i = I  
]=i@l i=i+l 

= / +  : 

+ 
1 d 2 < C > aPer 3oc PeT- 
c~ c/Z ~ ;~ ~ - - "  + 

i=i+ l 

lO~Pe~ 
~2 9,2 %2 

... q-... =--~zPer K,,, d ( C >  1 - -  c~Per ~Pe7 

�9 = ,~ i= l ~ ~i 
7:i-~-1 

@ P e r -  dZ z ~ o ~ - - ~ - - "  @ 2 2 . . . .  "'" -+- 
i==l )~f i=1  

]'=i+l 

. . - ] +  

69 



_~_ Per da(C)  _ _ - + _  

j=i+l 
h=i+l 

cr dZ a 
- - ~ - - ~  K~" l~lc~Pe~ s 3aZPe7 ~ ~ 

j=i-LI 

f = i + l  

2 2 2  "-~'- ~ a  o o 2 , . .  "-~- " ' "  i= ~ )~ ~j ~ z= l ~ )"7 ~ ~ 
i = i - ?  l J = ~-r I 
h =i-~-  1 k = i - -  t 

,'==k + 1 

m # i =/= ] #= k =/= I. (19) 

Equation (19) is quite interesting in many respects. First, there follows from it that upon taking the average of local 
parabolic transport equations for an active impurity, a differential equation can be obtained that is an infinite 
asymptotic series in the derivative of the mean concentration over the apparatus section with coefficients that depend 
on the degree of transverse nonuniformity in the system, the chemical reaction rate,~ and the radial substance transport 
velocity (Per), which was given a theoretical foundation in [11, 12]. Second, as follows from (19), upon taking the 
average of two-dimensional transport equations, additional convective and source-like terms appear, i.e., effects occur 
that are analogous to the phenomenon of directional transport in inhomogeneous turbulence [13] and the dynamo 
effect in magnetohydrodynamics [14], as was mentioned earlier [15]. As follows from (19), the coefficient of the 
second derivative d~(C)/dZ 9 is positive. However, the concept of a "dispersion flow" has a much wider sense in this 

ease since it includes the term (u'C') = ~ Fidi(C)/dZi exactly as the total concentration gradient equals 
i = 2  

d/dZ[ k Fidi(C)/dZi] and because of the sign-variability of the series (19) the total dispersions flow is directed to 
i = 0  

the side opposite to the direction of the total concentration gradient. 
For very large values of the channel length Z the derivative d(C)/dZ o ceases to depend on Z o, Eq. (13) can be 

integrated with respect to Z o, and the term d(u'C')/dZ in (7) takes the form 

d ( u ' C ' ) . =  ,~K~ Per d 2 (C3  (20) 
dZ ~ " dZ 2 

Substituting (20) into (7), we obtain the usual diffusion equation 

d ( C )  1 d2 (C)  
~ < C )  .... 

dZ Pe o dZ" 

with effective diffusion coefficient l/P% equal to Pe r ~ Ki/.,Xi2. The remaining terms in the series (19) equal zero in 
i=1  

this case. It is important to note that the criteria Pe r and A t = ~ Ki/)tl= agree completely with the corresponding 
i = l  

criteria obtained when taking the average of the nonstationary transport equation for a passive impurity in [I0], which 
affords a possibility for using the data obtained in investigating the residence time distribution function on cold test- 
stands for reactor analysis. As is shown in [10], the effective diffusion coefficient equals the Taylor dispersion 
coefficient exactly. In the absence of a reaction (a = 0), Eq. (19) goes over into the stationary analog of (1.15) in [10]. 
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The wel l - founded estimate of the quantities needed to compute the terms of  the series (19) is of  great practical 

interest. As is shown in [10], the radical Peclet criterion Pe r is within the limits of  approximately 5 to 10 in different  

kinds of chemical apparatus. The dimensionless chemical reaction rate constant a is of the order 10 -2-10 -1, H / R  ~ 4-6 

for the majority of reactions. Consequently, even under careful estimates the product Perc~ is of  the order 0.1-1.0. We 

estimate the contribution of  different  terms of  the series (14) to (19) with this condition. Let Z = I (yield from the 

reactor). The Z o found by the theorem of  the mean equals 0.5645 for the first term, 0.677 for the second, and 0.775 

for the third. Without taking account of  the differences in the coefficients Ki, the second term of  the equation here is 

approximately 10% of  the first, and the third is ~5%. If  we take into account that the coefficients K i for a turbulent 

flow dif fer  by a factor of  five (by one order for  laminar flow) and K 2 - 0.24 K l, K s -- 0.24 K i even in the case of the 
greatest transverse nonuniformity investigated in [10], then it is clear that for  e - 0.1 it is sufficient to take just the 

first term of  the series in the computation. For a ~ I estimates made in [10] will be legitimate and a trinomial equation 

F1 d ( C )  d2(C) d:~ ( C ) 
d - - -~  q- f , ,  - q:- F.~ ~z ( C ) = O, 

dZ 2 ' dZ 3 (21 ) 

should be recommended for practical computations, where 

F1 = Fxl [1 q- AI~ Pe r ( 0 , 9 5 7 -  0,0240: Pe,)]; 

F2 = FI~ [1 - -  A1 Pe,.Fai (0,917 - -  0,026&z Per)]; 

F~ = F13 [1 - -  A i PerFie (0,468 - -  0,00958c~ PeT)l; 

(22) 

Fi i ,  Fi2, Fla are constants formed by dividing the coefficients of the different  terms in the left side in (19) by the 

coefficient of the term a(C); A i = ~ Ki/),i 2 is the inhomogeneity parameter of  the velocity profile, which is 
i=1 

identical to the corresponding parameter in [10]. The factors in the square brackets in (22) approximate the 
corresponding terms in (19) with a 7-8% rms error. 

We find the boundary conditions to (21) as follows. Let a uniform flow (in concentration) with the relative 
concentration 

C 
( C ) -  - 1 .  

Co (23) 

come in to the apparatus entrance. Substituting (23) into (15) and passing to the limit as Z- - ,  0 we find 

d<C> 
- ~ < C ) .  

dZ (24) 

Thus, we obtain 

d (  C )  ~z z d z < C )  --cz . . . .  < C ) .  
dZ 2 dZ (25) 

As our computations show, the coefficient of the highest derivative d S ( C ) / d Z  3 is relatively small; therefore, 

the solution of  (21) can be sought by the method of  an expansion in series of  a small parameter. The constants in (22) 

- -  the transverse nonuniformity criterion of the velocity field A 1 and the radial Peclet criterion --  can, as already 

noted, be found by methods for investigating the residence time distribution function of  the fluid in the apparatus, 
and the chemical reaction rate constant o~ can be found from ordinary kinetic experiments. 

The theory was confirmed experimentally on a 3400-ram-diameter  operating chemical reactor for  the synthesis 
of diphenylol propane from phenol and acetone using an ion-exchange resin K U - 2 - 8  "c.p." as catalyst, which was in 
the fluidized state under the working conditions of reactor operation. The fluid flow configuration was investigated by 
the method of  radioactive indicators where orthonitrobromobenzene, tagged Br-82, well dissolved in phenol and 
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acetone were used as tracers. The isotope is a "/-emitter, which permitted recording it through the apparatus wall. The 

isotope half-life period is 36 h, which is sufficient for reliability of the experiment results. The tests were performed 
by the pulse method, where the pulse (radiometer MVR-5) was recorded at the reactor entrance and exit and 12 points 

thereon along its height (four in each section). The diagram of the sensor arrangement is shown in Fig. 1. Typical 

curves of the changes in concentration in time in one reactor section (Figs. 2 and 4) and at points located directly 

above each other at different modes of its operation (Fig. 3) are presented in Figs. 2-4. 
As follows from Fig. 2, for small reaction mass velocities in the apparatus the time of indicator incidence at 

the most remote point from the distributive lattice is often less than the time of its incidence on close-lying sections. 

Such a pattern of the concentration distribution is possible in the presence of bypass flows and complex circulation 

systems in the reactor. As the reaction mass velocity increases the concentration profiles equilibrate, and as is seen 

from Fig. 4, the concentration measured in one section are nearly in agreement. 
The flow configuration in the apparatus was estimated by the concentration curve recorded at the emergence 

of the reaction mass from the apparatus, for whose analysis the expressions derived in [10] were used. Attempts to 

process the test data by the ordinary Taylor diffusion equation or by the telegraph equation (1.17) in [10] proved 

unsuccessful since the moment of the fluid residence time distribution function I differed significantly from unity in 

practically all the tests, which can be explained, as is shown in [10], just within the framework of the present model. 

The search for the parameters was performed by minimizing the functional 

10 

F - ( ICop  ....  as; 
0,01 

where S is the Laplace variable. 
As follows from Fig. 5, in which test points of the measurement data 2 are superposed (each point is the mean 

value of 6-13 tests), the radial Peclet criterion decreases from 12 to 2 as the fluid velocity increases. 
In order to obtain data about the reactor efficiency, multiple examinations were performed in different modes 

of its operation. Although the kinetics of this process are quite complex, it can be computed according to the model 

developed in this paper since the reaction is performed in practice in a large excess of phenol (a phenol/acetone ratio 
of 10), and consequently, it can be taken that the reaction is of first order in acetone with a sufficient degree of 

accuracy. 
Since the radial Peclet number was of the order of 2-5 in the majority of reactor operating modes according to 

measurement data on a cold test-stand, while the dimensionless chemical reaction rate constant c~ equals 1-2 for this 

system, the product aPe r should be within the limits 5-l0 and the applicability of the trinomial equation (21) should 

additionally be given as foundation. The results of computing the coefficients F2/F 1, Fs/F 1, and F4/F 1 for ape r = 5 

and 10 are presented below for different values of the velocity field inhomogeneity coefficient (%) 

o~ Per =- 5 

A a - 10 -4 F,21F 1 F:~/F,  F4/F~ 

6,275 39,04 6,27 0,53 
7,502 39,04 6,27 0,53 
9,172 38,98 6,26 0,52 

11,524 38,92 6,24 0,52 
12,233 38,90 6,23 0,52 
13,101 38,89 6,23 0,52 
69,161 37,55 5,85 O, 48 

177,264 34,87 5,09 0,40 
208,332 34,45 4,88 0,39 
362,262 30,34 3,72 0,24 

a Per= 10 

F~/F, F:,IFj F41F 1 

30,77 4,36 0,35 
30,75 4,35 0,35 
30,72 4,35 0,35 
30,69 4,34 0,35 
30,66 4,33 O, 35 
30,66 4,33 0,35 
29,76 4,09 0,32 
27,89 3,61 0,28 
27,76 3,66 0,28 
24,34 2,70 O, 175 

As is seen, for all values o f  the degree of transverse nonuniformity of the velocity profile, the coefficient of the third 

terms of the series exceeds by more than an order the coefficient of the fourth term. Estimates show that for small 

degrees of transverse nonuniformity of the velocity profile (A 1 ,, 6.10 -4) kt4(C}/dZ41z=1 ~ kl3(C}/dZ3~=l and 
for a high degree of transverse nonuniformity (A 1 . ,  2.10 -~') kl4{C)/dZ4~=l ~ 1.3[dS(C)/dZ4~=l; therefore, 

utilization of the trinomial (2 1) is completely adequate for processing the test results. 
In connection with the fact that the reaction rate constant and the physical properties of the mixture vary 

noticeably over the apparatus height, the measurement results were processed as follows. For each reactor operating 

mode, the system of equations 
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d z ( Cj ) d 3 < Cj > ( 
FI d ( C j )  +F2 +F3 + f l (  CjI:, ( T ) ) = 0 ,  (26) 

d Z  d Z  2 d Z  8 

d Z ( T )  d 3 ( T >  
F1 d (7"____~) + F2 ~- F3 -+- [~ ( ( Cj > ( T > ) = 0 (27) 

dZ dZ z dZ ~ ' 

was solved jointly on an electronic computer with the boundary conditions (24) and (25). The subscript j in (26) and 

(27) refers to different  components of the reactive mixture, while f l  and f2 are equations of  the kinetics of the 
diphenylolpropane synthesis reaction. 

The computational method terminates in the selection of the model parameters (A 1 and Per) that satisfy the 

experimental curve of  the concentration and temperature changes along the reactor height. For a numerical solution of 

the problem, the system (26) and (27) goes over into a system of  ordinary f i rs t -order  differential  equations by the 
usual substitution 

d ( Cj ) d ( Clj <C1j> . . . . .  ; <C~j) = 
dZ dZ 

solved using linear multistep Adams and Gear methods [26]. 

Results of  computing the radial Peclet number found from data on reactor eff ic iency are presented in Fig. 5. 

Superposed there are points obtained by investigating the fluid residence time distribution function. As follows from 

the figure, the values of  the criterion Pe~r found by the different  methods are in satisfactory agreement. 

Analysis of Fig. 5 shows that as the fluid velocity increases Pe r diminishes, and starting with approximately the 
velocity 3.10 -4 m/see becomes equal to 5. It is characteristic that this velocity corresponds to the velocity of the 

beginning of fluidization for this system, to which large homogeneity of  the fluidization model is inherent because of 

the extremely close values of  the ionite and reactive mass densities. For low fluid velocities, the layer "sat" partially, 

i.e., was mainly in a fixed state, where irregular ejections of fluid were observed at  separate sites of the layer, which 
was due to the large transverse nonuniformity of the velocity and concentration profiles. It is interesting to note that 

the value Pe r = 5 found in tests agrees with the estimates made above. The dependence of the criterion A 1 on the fluid 

velocity is analogous in nature to the dependence presented in Fig. 5. For low fluid velocities A 1 is of the order of 

0.01-6.015, then drops to the value 0.001-0.002. The uniform fluidization mode that holds in the majority of reactor 

operating modes, the absence of circulation currents predetermined the success of utilizing the theory developed in 

this paper since all the equations of the model are obtained under the assumption of constancy of the velocity profile 

along the apparatus height. For low reactive mass velocities, when the fluidization mode was known to be 
inhomogeneous, the computation can only be considered approximate. 

CONCLUSIONS 

1. A stationary diffusion differential  equation is derived by the "perturbation" method for the mean 

concentration over the channel for  an inhomogeneous velocity profile and the presence of  sources in the form of a 
f i rs t-order  chemical  reaction. It is shown that the differential  equation is an asymptotic series in the derivative of the 

mean concentration over the channel section with coefficients dependent on the degree of transverse nonuniformity of 

the velocity profile, the eff iciency of  the radial mixing in the system, and the chemical reaction rate constants. 
Additional convective and source-like terms are a characteristic feature of  the averaged equation. 

2. Estimates are carried out showing that terms with derivatives to the third order must be taken into account 

to achieve the required computation accuracy up to values of c~Pe r ~ 10. Under  conditions of  a small ratio between the 

channel length and radius or a high chemical reaction rate, the accuracy of the computation can be raised by using 
higher-order  terms. 

3. It is shown that the unknown parameters of the problem: the criterion of the velocity profile inhomogeneity 
and the radial Peeler criterion can be found in an independent experiment investigating the fluid residence time 
distribution function. 

4. The equations obtained in the paper are more general than those in the literature. The Taylor model and the 
hyperbolic equations being discussed in the literature at this time enter as a particular case therein. 

5. It is shown that the system "memory" is not constrained by the introduction of an additional term 
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d2(C)/dr 9 (in a system moving with the mean flow velocity) but includes derivatives of all orders. Utilization of 
some number of terms of the series should be due to specific conditions of the problem under consideration. 

6. The theory is confirmed experimentally according to data of operation of an industrial reactor for synthesis 
of diphenylolpropane of 3.4-m diameter with a fluidized bed of ionites as catalyst. Satisfactory agreement is obtained 
between parameters of the problem found in an experiment investigating the fluid residence time distribution function 
in the apparatus and data investigating its operating efficiency. 

NOTATION 

Here C is the concentration; D, diffusion coefficient; H, reactor height; r, running radius; R, apparatus radius; 
u, velocity; X, longitudinal coordinate; ap, reaction rate constant. The criteria are: Pe r = ((u)Rg")/((Dr)H) is the radial 

Peclet criterion, A 1 ffi ~ Ki/Ai 2 is the velocity field inhomogeneity parameter in the apparatus; Pe e ffi (PetAl) -x is the 
t =1  

effective Peclet criterion. The angular brackets denote taking the average over the area of the apparatus; the "prime" 
sign "refers to fluctuating quantities (over the section). Subscripts: r is the radial and e is for effective. 
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